Electrostatics

IMPORTANT FORMULAE IN ELECTROSTATICS

1. Electrostatic force between two charges

 $F = K \cdot \frac{q_1 q_2}{r^2} = \frac{1}{4\pi\epsilon_0\epsilon_r} \cdot \frac{q_1 q_2}{r^2}$ For air, $\epsilon_r = 1$ Fair $= \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{r^2} = 9 \times 10^9 \frac{q_1 q_2}{r^2}$

- 2. Electric field intensity due to a point charge, $\vec{E} = \lim_{q_{0} \to 0} \frac{\vec{F}}{q_{0}}$
- 3. Electric field intensity due to infinite linear charge density (λ)

$$E=\frac{1}{4\pi\epsilon_0}\cdot\frac{2\lambda}{r}$$

4. Electric field intensity near an infinite thin sheet of surface charge density σ $E = \frac{\sigma}{2\epsilon_0}$

For thick sheet $=\frac{\sigma}{\epsilon_0}$.

5. Electric potential, $V = \lim_{q_0 \to 0} \frac{w}{q_o}$

Electric potential due to a point charge, $V = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{r}$

- 6. Relation between electric field and potential $E = -\frac{dV}{dr} = \frac{V}{r}$ (numerically)
- 7. Dipole moment, $\vec{P} = q. 2\vec{l}$
- 8. Torque on a dipole in uniform electric field, $\vec{\tau} = \vec{p} \times \vec{E}$.
- 9. Potential energy of dipole, $\cup = -\vec{p} \cdot \vec{E} = -pE \cos \theta$
- 10. Work done in rotating the dipole in uniform electric field from orientation Q₁ to Q₂ is $W = U_2 - U_1 = pE(\cos \theta_1 - \cos \theta_2)$
- 11. Electric field due to a short dipole
 - (i) at axial point, $E_{axis} = \frac{1}{4\pi\epsilon_0} \cdot \frac{2p}{r^3}$

(ii) at equatorial point,
$$E_1 = \frac{1}{4\pi\epsilon_0} \cdot \frac{p}{r^3}$$

- 12. Electric potential due to a short dipole
 - (i) At axial point, $V_{axis} = \frac{1}{4\pi\epsilon_0} \cdot \frac{p}{r^2}$
 - (ii) At equatorial point, $V_{\blacksquare} = 0$.
- 13. Dielectric constant, $K = \frac{\epsilon}{\epsilon_0} = \frac{c_{med}}{c_{air}}$

14. Capacitance of parallel plate capacitor

- (i) $C = \frac{A\epsilon_0 K}{d}$, in medium of dielectric constant K
- (ii) $C = \frac{A\epsilon_0}{d t(1 \frac{1}{K})}$; if space between plate partially filled with dielectric of thickness t.
- 15. Combination of capacitors :-

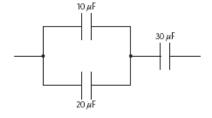
(i) In series,
$$\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3}$$
, $q_1 = q_2 = q_3$, $V = V_1 + V_2 + V_3$

(ii) In parallel,
$$C = C_1 + C_2 + C_3$$
, $q = q_1 + q_2 + q_3$, $V_1 = V_2 = V_3 = V_3$

16. Energy stored by capacitor

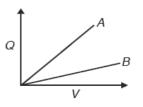
$$\bigcup = \frac{1}{2}CV^2 = \frac{Q^2}{2C} = \frac{1}{2}QV$$

17. Electrostatic energy density

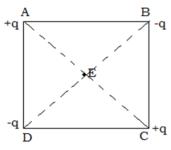

$$\vartheta_e = \frac{1}{2} \epsilon_0 E^2$$
, in air
 $\vartheta_e = \frac{1}{2} \epsilon E^2$, in medium

18. Total electric flux, $\Phi = \oint \vec{E} \cdot \vec{ds} = \frac{1}{\epsilon_0} \times net \ charge \ enclosed \ by \ the \ surface$

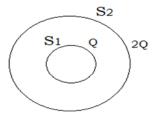
NUMERICALS


LEVEL I

- 1. What is the charge acquired by a body when 1 million electrons are transferred to it?
- 2. An attractive force of 5N is acting between two charges of $\pm 2.0 \ \mu C \ \& \pm 2.0 \ \mu C$ placed at some distance. If the charges are mutually touched and placed again at the same distance, what will be the new force between them?
- 3. A charge of +3.0 x 10⁻⁶ C is 0.25 m away from a charge of -6.0 x 10⁻⁶C.
 a. What is the force on the 3.0 x 10⁻⁶ C charge?
 b. What is the force on the -6.0 x 10⁻⁶ C charge?
- An electric dipole consist of a positive and a negative charge of 4μC each placed at a distance of 5mm. Calculate dipole moment.
- 5. Three capacitors of capacitances 2μ F, 3μ F and 4μ F are connected in parallel. What is the equivalent capacitance of the combination? Determine charge on each capacitor, if the combination is connected to 100V supply?
- 6. An electric dipole with dipole moment $4x10^{-9}$ C-m is aligned at 30^{0} with direction of electric field of magnitude $5x10^{4}$ N/C. Calculate the magnitude of the torque acting on the dipole.
- 7. A point charge of 2μ C is at the centre of cubic Gaussian surface 9.0 cm in edge. What is the net electric flux through the surface?
- 8. What is the amount of work done in moving a 200nC charge between two points 5 cm apart on an equipotential surface?
- 9. How much work must be done to charge a 24 μ F capacitor, when the potential difference between the plates is 500 V?
- 10. What is the equivalent capacity of the network given below?



LEVEL II


- 1. What is the work done in moving a charge of 100µC through a distance of 1cm along the equatorial line of dipole?
- 2. The given graph shows that variation of charge q versus potential difference V for two capacitors C_1 and C_2 . The two capacitors have same plate separation but the plate area of C_2 is double than that of C_1 . Which of the lines in the graph correspond to C_1 and C_2 and why?

- 3. Two point charges 5μ C and -4μ C are separated by a distance of 1 m in air. At what point on the line joining the charges is the electric potential zero?
- 4. Two charges $+5\mu$ C and $+20\mu$ C are placed 15 cm apart. At what point on the line joining the two charges is the electric field zero?
- 5. Two charges $+16\mu$ C and -9μ C are placed 8 cm apart. At what point on the line joining the two charges is the electric field zero?
- 6. A 600 pF capacitor is charged by a 200 V supply. It is then disconnected and from the supply and is connected to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process.
- 7. Keeping the voltage of the charging source constant, what will be the percentage change in the energy stored in a parallel plate capacitor if the separation between its plates were to be decreased by 10%.
- 8. Four charges are placed at the vertices of a square of side d as shown in the figure.(i) Find the work done to put together this arrangement. (ii) A charge q_0 is brought to the center E of the square, the four charges being held fixed at its corners. How much extra work is needed to do this?

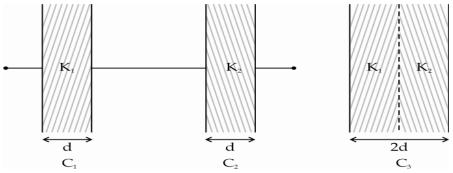
9. If S_1 and S_2 are two hollow spheres enclosing charges Q and 2Q respectively as shown in the figure

(i) What is the ratio of the electric flux through S_1 and S_2 ?

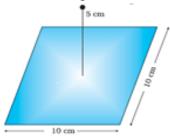
(ii) How will the flux through the sphere S_1 change, if a medium of dielectric constant 5 is filled in the space inside S_1 .

10. A charge of 24µC is given to a hollow sphere of radius 0.2m. Find the potential

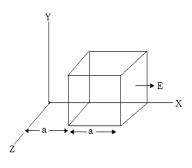
(i) at the surface of the sphere, and


(ii) at a distance of 0.1 m from the centre of the sphere.

(iii)at the centre


LEVEL III

- 1. A slab of material of dielectric constant khas the same area as the plates of a parallel plate capacitor but has a thickness 3d/4, where d is the separation of the plates. How is the capacitance changed when the slab is inserted between the plates?
- 2. A parallel plate capacitor with air between the plates has a capacitance of 8μ F. What will be the capacitance if the distance between the plates is doubled and the space between them is filled with a substance of dielectric constant K=6?


- 3. Two dipoles, made from charges $\pm q$ and $\pm Q$, respectively, have equal dipole moments. Give the (i) ratio between the 'separations' of these two pairs of charges (ii) angle between the dipole axis of these two dipoles.
- 4. The capacitors C1, and C2, having plates of area A each, are connected in series, as shown. Compare the capacitance of this combination with the capacitor C3, again having plates of area A each, but 'made up' as shown in the figure.

5. A point charge $+10\mu$ C is at a distance 5cm directly above the centre of a square of side 10cm as shown in fig. What is the magnitude of flux through the square?

- 6. Calculate equivalent capacitance of the given network and determine the charge and voltage across each capacitor.
- 7. Two identical charges, Q each are kept at a distance r from each other. A third charge q is placed on the line joining the two charges such that all the three charges are in equilibrium. What is magnitude, sign and position of the charge q?
- 8. ABCD is a square of side 5m. Charges of +50C, -50C and +50C are placed at A,C and D respectively . Find the magnitude of resultant electric field at B.
- 9. A cube with each side a is kept in electric field given by E = Cx as shown in the figure where C is a positive dimensional constant. Find (i) The electric flux through the cube, and
 - (ii) The net charge inside the cube.

10. Two parallel plate capacitor X and Y have same area of plates and

same separation between them. X has air between the plates whereas Y has a dielectric of constant k=4 (i) Calculate capacitance of each capacitor if equivalent capacitance is4 μ F.

- (ii) Calculate potential difference between the plates of X and Y.
- (iii) What is the ratio of electrostatic energy stored in X and Y.

ANSWERS

LEVEL I

- 1. $Q = Ne \ 1.6 \ x 10^{-13}C$
- 2. F=0
- 3. $F_{AB} = F_{BA} = 2.736N$
- 4. P=2x10⁻⁸ C-m
- 5.
- 6. 10⁻⁴Nm
- 7. $2,26 \times 10^5 \text{Nm}^2/\text{C}$
- 8. W=0
- 9. W=3J
- 10. C=15µF

LEVEL II

- 1. 0
- 2. A
- 3. $\frac{5}{9}m$ from 5µC charge
- 4. 5 cm from 5 μ C charge
- 5. 24cm from -9 μ C charge
- 6. 6x10⁻⁶ J
- 7. 11.11%

8.
$$\frac{q^2}{4\pi\epsilon_0}(4-\sqrt{2})$$
 , 0

9. 1:3,
$$\emptyset = \frac{Q}{5\epsilon_0}$$

10. (i) $1.08 \times 10^6 V$ (ii) $1.08 \times 10^6 V$ (iii) $1.08 \times 10^6 V$

LEVEL III

- 1. $\frac{4k}{k+3}C_0$
- 2. 24 μF
- 3. q a=Q A or a/A=Q/q $\theta = 0$
- 4. $C_3 = C_{eq}$
- 5. $1.88 \times 10^5 \text{Nm}^2/\text{C}$
- 6. $\frac{200}{3}pF$,100 V, 50V, 50V, 200V,10⁻⁸C, 10⁻⁸C, 10⁻⁸C,2x10⁻⁸C
- 7. Q/4, Positive, r/2
- 8. $2.7 \times 10^{10} \text{N/C}$
- 9. $a^{3}C$ N-m²/C, $a^{3}C\epsilon_{0}$ Coulombs.
- 10. $C_x=5\mu F$ $C_y=20Mf$